

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-2, February 2017

 1 www.ijeas.org

Abstract— The user interfaces in computing environments

are becoming experience - oriented, diversified, and

personalized from the WIMP (Widows, Icons, Mouse, and

Pointer) interface, and a wide variety of interaction devices are

continuously being developed to support these needs. Therefore,

in order to combine these new devices with existing application

software, a method for connecting operating systems and the

existing software is needed. Researchers in various fields such

as virtual reality, home appliances, and ubiquitous computing

have studied middleware to solve this problem. This paper is a

survey of these middlewares.

Index Terms— Multi-Modal, Interaction, Middleware.

I. INTRODUCTION

 Already, many IT devices such as smartphones, table PCs,

notebook PCs, game consoles, and IP TVs are being used

throughout our lives and are becoming indispensable

nowadays. In addition, hardware-related technologies such as

smaller and less power-consuming processors and memories

have evolved in recent years, despite the stronger

performance, and much more IT devices are expected to be

used in our daily lives in the near future.

Many researchers around the world are making efforts to

efficiently use and manage such overflowing devices, and

especially, they are paying a great deal of attention in the

fields related to HCI (Human-Computer Interface). However,

most HCI researches are limited to the development of

recognition algorithms (e.g. voice, gestures) or hardware

devices for specific modalities, while the development of

system software to support various kinds of modalities and

input devices and standards have not been studied yet.

In the case of virtual reality, there has been an effort to

support programmers to develop interactions using multiple

devices and to develop them through the same interface.

However, technologies that support a broad range of public

services or devices have not yet been developed. Microsoft

continues to make efforts to support various devices and

platforms through platforms such as Plug and Play and .NET,

but it is dependent on OS such as MS Windows.

In addition, with the recent successful commercialization

of smartphones, console games, and haptic devices and the

arrival of the ubiquitous environment where computers must

be contacted anywhere, the current WIMP (Windows, Icons,

Mouse, and Pointer) interface evolves into a next-generation

experience-oriented and personalized interface, and it is

necessary to develop system software to support this

evolution. However, in order to incorporate such an evolved

 Jinseok Seo, Division of Digital Contents Technology, Dong-eui

University, Busan, Korea

interface into existing application software, it causes a lot

of overhead due to the lack of proper mediating layer between

OS and application software. Therefore, it is important to

establish appropriate standards for easy integration of these

services and interactions and to develop the middleware

required for them.

Because of this background, this study investigated

middlewares supporting multimodal interactions and various

types of devices. As a result, we have found the efforts and

results in various fields such as IoT (Internet of Things), home

appliances, ubiquitous computing as well as virtual reality. In

this paper, we analyze 13 representative cases among the

results.

II. MIDDLEWARES FOR MULTI-MODAL INTERACTIONS

A. VRPN

It is VRPN [1] that provided the most motive to this study.

VRPN is a library for originally developed for virtual

environment applications. It is composed of classes for using

various VR input devices (tracker, 3D mouse, glove, etc.)

distributed on a network. Complex virtual environment

applications often operate in a distributed environment

consisting of various operating systems. VRPN provides the

same interface regardless of the physical location (the same

process, another process on the local host, a device on another

host, a device on a different OS, etc.) of the device.

Generally, the most difficult thing for a virtual reality

application programmer is to develop a control program for

devices operating in various operating systems. However,

when VRPN is used, various heterogeneous devices can be

used in an application program simply by adding a very

simple source code.

In order for an application to be able to use various devices,

of which the control methods and the supporting operating

systems are different from each other, in a consistent way,

VRPN has classified each device according to its interface

type. Types include Tracker, Button, Analog, and Dial.

When a device provides a variety of interactive interfaces, the

client program maintains a separate network connection for

each interface and sends and receives data streams even

though it is the same device.

If multiple interfaces are provided in a single physical

device, an abstract logical device is defined at an intermediate

stage and operated as though there are multiple physical

devices. And even one interface provides a very flexible

structure for many different uses. As a result, from the

standpoint of an application program, VRPN can be used by

connecting a logical device that provides the necessary

interface regardless of the type of physical device to be used,

A Survey of Middlewares for Multi-Modal

Interactions

Jinseok Seo

A Survey of Middlewares for Multi-Modal Interactions

 2 www.ijeas.org

the underlying operating system, or the driver software for the

device. This project shows that the same device, or even the

same interface, should be aware of various usage scenarios

depending on their use.

B. Tangible User Interface (TUI) SDK

Our preliminary study, TUI SDK [2], defined a logical

device in the middle layer and applied it to games. In this

study, we developed SDK and authoring tool for a TUI

(Tangible User Interface) computer (see Fig. 1) composed of

various input devices (camera, multi-touch panel, RFID,

accelerometer, gyroscope sensor, button). We also

implemented a software module and included it in our

authoring tool so that contents using the conventional

keyboard and mouse can be run on this computer.

In this SDK, to use the camera-based vision sensor or

accelerometer in the existing contents using only the keyboard

and mouse, mapping relationships are defined in a scripting

language called TML (TUI Markup Language), which is

based on XML, so that data or events generated by each

physical sensor can be automatically transformed into a form

required by the contents.

Physical devices are not only different in the events and

data generated by their characteristics, but also have different

control methods. For example, in the case of an

accelerometer, it should be controlled by a polling method in

which the data value of the sensor must be checked

continuously with a constant update period. In the case of a

touch sensor, a callback function is called in response to a

specific event.

In this study, we developed a TUI SDK that allows users to

receive events or data from devices in a consistent fashion,

regardless of the characteristics of the devices. All you have

to do is request the desired data type or event. To this end, the

TUI SDK defined TPIS, a collection of class libraries that

wrap physical devices, and defined the TLIS library that

represents logical devices that can be used in a consistent way

Fig. 1: TUI Computer including various tangible user interfaces

The main role of the TUI SDK is to help define the

mapping relationship between the logical device class and the

physical device class, which can be dynamically redefined

when the content is running (at runtime). Once dynamic

redefinition is enabled, content developers do not have to

terminate the running content and can instantly see the results

of their modifications without having to recompile and re-run

the programming code. Finally, the TUI SDK defines an

XML-based scripting language that allows content developers

without expertise in computer programming to utilize various

multi-modal devices for their contents.

C. 3DML

An example of an XML-based can also be found in 3DML

[3]. 3DML helps you implement the interaction in 3D content

using an XML-based markup language without using a

programming language such as C ++. Basically, it uses data

flow architecture to connect input devices, interaction

methods, and feedback objects.

3DML models interactions by defining and combining

blocks, where each block acts as a filter. Each block has a

port (e.g., position, orientation, etc.) for receiving input and a

port (e.g., selectObject) for sending output values. Blocks are

used to process data from input ports and select objects to be

delivered. In 3DML, various basic interaction techniques

required for 3D content are defined as filters. In addition,

these basic interaction filters can combine to form complex

interactions.

D. GlovePIE

GlovePIE (Glove Programmable Input Emulator) [4] is a

program that originally started as a utility for games on the PC

platform. Input values from various devices such as joysticks,

game pads, mice, keyboards, MIDI input devices, trackers,

and VR Gloves can be used in various applications including

not only computer games but also general applications such as

MP3 players.

It is similar to the above TUI SDK that provided a way to

use input values from various in existing applications, but

GlovePIE defines an object-oriented scripting language and

provides very flexible and powerful control capabilities.

Although it takes a lot of time to get used to non-experts who

are unfamiliar with computer programming, using a variety of

arithmetic functions or equations makes it possible to express

complex interactions as much as possible in a programming

language such as C or C ++.

E. UbicompBrowser

UbicompBrowser [5] interacts with various devices in a

way that extends the WWW (World Wide Web). This project

has two characteristics as follows. The first suggests a way to

send input data from the web to various output devices around

us, including mobile devices. The second is to use Uniform

Resource Identifiers (URIs) to provide consistent access and

control to resources, such as TVs and light switches, as well as

resources on the web.

In this study, they propose “Extended URL” (See Table I)

to access various resources and devices. It can be divided into

“Protocol / Media-type” and “Media Content.” For example,

“tv://local/ARD” means to set the channel to “ARD” on the

TV in the same location as the mobile device you are using,

and “x10://local/light?low” means that it weakens the

intensity of the light. This consistent approach and control

scheme not only has the advantage of being able to manage

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-2, February 2017

 3 www.ijeas.org

various devices and resources very efficiently, but also has the

advantage of utilizing existing HTTP protocol-based

resources and systems as it is when constructing future IoT

environments.

Table I: Extended URLs of UbicompBrowser

URL Protocol / Media Type Media Content

tv://local/ARD television German TV

channel ARD

radio://local/SWR3 radio German radio

station SWR3

x10://local/light?low house automation

control sequence

dim the light low

To realize UbicompBrowser, two important problems have

to be solved. The first is a “Detection and management”

problem for detecting and managing devices and resources in

various places in the surrounding environment. The second is

a “Matching resources” problem for finding and delivering

the corresponding resources from a specific device’s request.

The most important thing for “detection and management”

is to constantly monitor the environment and update the

directory for resources and devices to the latest. This should

take different policies depending on the characteristic of each

device. The policy should also be different depending on

whether the device has a built-in automatic registering

function or not. Another option is to register each device with

a tag (e.g., RFID).

The “matching resource” problem is to find and deliver the

specific resource requested by the user. UbicompBrowser

uses rule-based decision-making techniques. The rules are set

according to 4 conditions as the following Table II.

Table II: Decision making rules in UbicompBrowser

Rule Description

Rule 1 The environment described in "device directory"

Rule 2 Application limitations or additional rules

Rule 3 Characteristics of media

Rule 4 User preferences and context information

F. Beach

BEACH (Basic Environment for Active Collaboration with

Hypermedia) [6] proposes a software architecture for using

various devices with different characteristics in ubiquitous

computing environment. This is similar to the

“UbicompBrowser” above, but it offers a more general and

fundamental solution. More importantly, the implications of

this study are very well summarized in terms of what to

consider to design a middleware similar to the purpose of this

study.

For example, various input / output devices distributed on

the network (such as a large display device, a tabletop type

PC, a device providing various multi-modal experiences and

interfaces, etc.) serve as a BEACH client and are connected to

the BEACH server. The most important feature of the system

using BEACH is multi-user support, which is possible

because it provides the ability to efficiently process

concurrent events from multiple BEACH clients intertwined

with the BEACH server. To do this, the event structure is

layered into low-level / high-level events, and a separate

dispatching strategy is supported for each event level.

G. Plan B

This study proposes “Plan B” [7], an operating system for

IoT environments to be introduced in the near future. Most

researchers are approaching from the perspective of

middleware for pervasive environments such as IoT or

ubiquitous computing, but this study is approaching from the

point of view of file system which is a part of operating

system.

In Plan B, all resources (including various input / output

devices) are treated as virtual files in a kind of distributed

network environment. This file has a mechanism similar to

that of NFS (Network File System), which is widely used in

unix-based operating systems. Resources representing a

single I / O device are exposed on the network with their

names and attributes, and from a user’s point of view, the

physical location of each resource (regardless of local host or

remote host), the user can use it freely according to his/her

own needs. This system has been in operation for many years

at the Sistemas Institute of Rey Juan Carlos University in

Spain.

The structure of Plan B is much simpler than expected.

Thanks to this simple structure, it can be applied to various

fields irrespective of characteristics and kinds of devices, and

the overhead of system operation is also very little. Hosts that

serve resources need only expose their externally accessible

devices as network files.

Serviceable resources in Plan B include not only input /

output devices such as a keyboard and a mouse, but also

widgets that are components of a graphical user interface

(GUI). This is similar to the server-client architecture of the

X-Window system. Various UI widgets that are served from a

remote host are freely available on the local host. For

example, it is possible to use a UI widget with a physical

device, such as a sound device, from a remote host.

H. Smart Baton

The Smart Baton [8] system is a remote-control system for

home appliances and office appliances. The basic

configuration of this system uses a PDA combined with a

laser pointer for remote control, and each home appliance and

office machine includes a laser receiver and a network

function.

The feature of this system is that it allows users to select

various devices easily and clearly, provides a user interface

suitable for each device through PDA, supports not only

multiple users, but also security functions. First of all, it is

unique that it used the idea of a laser pointer to easily and

clearly select the desired device. The laser pointer

communicates with the laser receiver of each device to

identify the device. Once the identification is made, the

subsequent communication is performed through the network

in consideration of security, and through the user interface

provided on the LCD screen of the PDA, a very abundant

application and control freedom is given unlike the other

remote control systems.

I. Ubiquitous Chip

In the ubiquitous computing environment of the future, the

environment of our daily lives can be regarded as a network of

computers connected to each other. It is clear that various

A Survey of Middlewares for Multi-Modal Interactions

 4 www.ijeas.org

computers that are very different in characteristics or purpose

from each other, which are different from the PCs or mobile

devices we use today, are connected to each other in a

complex way.

This study introduces a ubiquitous chip [9], which is a kind

of device for I / O control developed with this environment in

mind. In this study, ubiquitous computing environment has

three requirements as follows (See Table III). The ubiquitous

chip is designed to meet these requirements.

Table III: Requirements of ubiquitous computing environment

Req. Description

Autonomy It must be processed and operated by itself without human

intervention or manipulation.

Flexibility It should be flexible enough to be applied to various needs.

Organic

Cooperatio

n

Multiple computers must be able to organically combine to

perform complex tasks.

One chip may be used independently, and multiple chips

may be combined organically to perform complex functions.

Each chip can define its own rules according to its purpose, so

it can perform its own tasks under the rule base without human

intervention (autonomy), can freely define new rules

(flexibility). In addition, many chips can have a structure that

operate organically (organic cooperation), so all of the above

three requirements are met.

The rules in this system have an Event-Condition-Action

(ECA) structure. When a certain event satisfies a predefined

condition, it takes its predefined action. To enable this

rule-based control, each chip has a built-in microprocessor

(PIC16F873) and a lithium-ion battery, with connectors for

connecting various external devices or additional chips.

J. Distributed User Interface Elements

In recent years, the price of display devices using LCDs

and LEDs has fallen, and flat-type display devices have

become very popular output devices. In addition, small and

lightweight mobile devices such as Tablet PCs developed

from small laptops are being used in many parts of our lives.

Moreover, in a future, these flat-type display devices and

mobile devices will all be connected to the network and used

together organically.

In [10], they propose an efficient user interface in the

environment mentioned above. There are two typical features

in this study. The first is that the user interface is

transparently distributed to the various display devices

connected through a network. This means that the

components of GUI can be freely distributed regardless of the

type of the platform or the operating system of the display

device. The second feature is that a user interface for a

specific application can be collaborated by sharing with a

large number of users. Each user can freely collaborate with

other users using the user interface of the his/her own display

device.

For example, the user interface provided through the

original web browser can be distributed to three different

devices (e.g., a smartphone, a tablet PC, and a notebook PC)

depending on the service purpose. First, the smartphone can

be used exclusively for the zooming user interface. Second,

the tablet PC can be used for scrolling only. Finally, the

notebook PC can display a user interface for browsing

information.

K. NOTOS

An example of a “distributed user interface” technique

similar to the one in the previous section used for actual

medical use can be found in NOTOS [11]. NOTOS suggests a

structure that allows the user interface to be distributed to

dynamically available devices. In order to determine a user

interface adaptable to a specific device, the following three

steps are performed.

1) Stage 1: The “Peer-Device Discovery” module

determines the available devices and the interaction

components of each device.

2) Stage 2: The “Rule Engine” determines how to

distribute user interface components by considering the

characteristics and limitations of each device.

3) Stage 3: The “DUI Engine” transmits the user

interface component to the device through the network.

When the user interface is distributed in such a manner, in

order to receive input from the user rather than merely

displaying information, the event generated from each device

must be efficiently transmitted to the main process of the

application program. In the NOTOS, the “DUI Engine” plays

this role. In a process that continuously inspects a specific

event, it let the DUI engine know the information about an

event desired by the user in advance and requests to notify

when the event occurs. Then, the DUI engine immediately

delivers the event generated in each dispersed user interface

to the promised “Event-Listener.” For example, by

distributing a graphical user interface for a movie player

running on a PC to a mobile device, a user can remotely

control the movie.

L. SUPPLE

In the techniques to distribute graphical user interfaces to

devices connected to a network, as in [10] or [11] above, one

of the important problems is to transform each graphical user

interface component to suit the characteristics (screen

resolution, size, physical user interface, etc.) of the device. In

[10] and [11], components have been implemented in advance

in consideration of the characteristics of each device, but it is

expected to be difficult to apply them to various practical

applications. The reason is that, as is always the case in the

near future, the more kinds of devices become available, so it

will take a lot of time and cost to manually create all the

components for every device.

SUPPLE [12] introduces a technique for automatically

generating user interfaces to solve the above problem. In this

study, they looked at the problem of creating the most suitable

user interface as a “Decision-theoretic optimization

problem,” and aimed at minimizing the efforts of the user to

manipulate the user interface components to be rendered on

the actual device. In addition to the effort to use each

component, they defined the following three variables as

characteristics of each component.

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-4, Issue-2, February 2017

 5 www.ijeas.org

Table IV: Variables for calculating the properties of each UI

component
Variable Description

Functional

specification of user

interface

The type of data that will actually be exchanged

between the user and the application

Device model User interface components available on each

device

User model Activity performed by the user on each device

M. TransCom

In the environment where low-cost mobile devices are

widely used as in the present, the biggest problem is that it is

difficult to organically interwork with each other due to too

many different types of devices and operating systems. If the

same operating system is used, it is not a problem. However,

when the operating system is changed, the network protocol to

be used is changed. Therefore, the reusability and utilization

of data dependent thereon are also reduced. For example,

documents or data created on an iPhone using iOS will have

no meaning on mobile devices using Microsoft’s Windows

Mobile phones. A bigger problem is that every device has its

own applications and data representations, which leads to a

waste of resources (data storage, processors, etc.).

TransCom [13] is a pilot system to solve the above problem.

This system uses a kind of “thin client” technique, which is

designed so that client devices can use various remote

operating systems, applications, and data regardless of

operating system or network protocol type. Once the

operating system on the remote server is received over the

network and booted, you can use the desired application and

data on the remote server as well. Of course, compared to

client devices using proprietary operating systems, the

overhead of network transmission is large. However, in a

near future, network technology that supports transmission

speeds of several tens to hundreds of times will be realized, so

it is not expected to be a big problem. In addition, as noted in

[13], testing using the pilot system took about 48 seconds to

boot the operating system, and the Microsoft Word 2003 took

only 1.26 seconds to start.

III. DISCUSSION

As you saw in Chapter 2, we can see that many efforts are

being made to efficiently use and manage various kinds of

devices. Among them, there was an effort to efficiently

manage many devices connected to the network, and there

was a case where a software development kit (SDK) was

developed to provide a convenient development environment

for developers. Also, there have been many researches

focusing on interfaces with users, such as research on

generation and conversion of GUI components for various

devices.

However, in this age of rapid change of IT technologies and

paradigms, such approaches are reaching their limits. Most

researches are limited to specific categories of devices, and a

middleware. Therefore, I think it is necessary to study I / O

structure that supports various modality based on the wider

types of devices, but does not depend on a specific operating

system or a middleware.

REFERENCES

[1] Taylor II, Russell M., et al. “VRPN: a device-independent,

network-transparent VR peripheral system,” Proceedings of the ACM

symposium on Virtual reality software and technology. ACM, 2001.

[2] J. Seo, et al., “Implementation of an Authoring Tool for Tangible User

Interface,” Journal of Digital Contents, 8(7), pp. 9-16, 2008.

[3] P. Figueroa, M. Green, and H. J. Hoover, “3DML: A Language for 3D

Interaction Techniques Specification,” Eurographics, 2001.

[4] C. Kenner, “GlovePIE,” URL: http://glovepie. org/glovepie. php [last

accessed 2013-02-04] (2007).

[5] M. Beigl, A. Schmidt, M. Lauff, and H. W. Gellersen, “the

UbicompBrowser,” Proceedings of the 4th ERCIM Workshop on User

Interface for All, 1998.

[6] P. Tandler, “Software Infrastructure for Ubiquitous Computing

Environments: Supporting Synchronous Collaboration with

Heterogeneous Devices,” Proceedings of UbiComp 201: Ubiquitous

Computing, LNCS 2001, pp. 96-115, 2001.

[7] F. J. Ballesteros, G. Guardiola, K. Leal, E. Soriano, “Plan B: An

Operating System for Ubiquitous Computing Environments,” IEEE

Pervasive Computing, 2006.

[8] A. Saito, M. Minami, Y. Kawahara, H. Morikawa, and T. Aoyama,

“SmartBaton Systems: a universal remote control system in ubiquitous

computing environment,” International Conference on Consumer

Electronics, pp. 308-309, 2003.

[9] T. Terada, M. Tsukamoto, K. Hayakawa, T. Yoshihisa, Y. Kishino, A.

Kashitani, and S. Nishio, “Ubiquitous Chip: A Rule-Based I/O Control

Device for Ubiquitous Computing,” LNCS 3001, pp. 238-253, 2004.

[10] K. Luyten and K. Coninx, “Distributed User Interface Elements to

support Smart Interaction Space,” Proceedings of the Seventh IEEE

International Symposium on Multimedia, 2005.

[11] M. Bang, A. Larsson, E. Berglund, and H. Eriksson, “Distributed user

interfaces for clinical ubiquitous computing applications,”

International Journal of Medical Informatics, 545-551, 2005.

[12] K. Gajos, and D. S. Weld, “SUPPLE: Automatically Generating User

Interface,”In Proceedings of IUI’04, 2004.

[13] Y. Zhang, and Y. Zhou, “Transparent Computing: A New Paradigm for

Pervasive Computing,” LNCS 4159, pp. 1-11, 2006.

Jinseok Seo received the M.S. and Ph.D. degrees in Computer Science and

Engineering from Postech, Korea, in 2000 and 2005, respectively. Since

2005, he joined the division of digital contents technology, Dong-eui

University, Busan, Korea. His main research interests are artificial

intelligence for computer games, game engines, virtual reality, and

augmented reality.

